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Mutual information between the time series of two dynamical elements measures how well their activities
are coordinated. In a network of interacting elements, the average mutual information over all pairs of elements
I is a global measure of the correlation between the elements’ dynamics. Local topological features in the
network have been shown to affect I. Here we define a generalized clustering coefficient Cp and show that this
quantity captures the effects of local structures on the global dynamics of networks. Using random Boolean
networks �RBNs� as models of networks of interacting elements, we show that the variation of �I� �I averaged
over an ensemble of RBNs with the number of nodes N and average connectivity k� with N and k is caused by
the variation of �Cp�. Also, the variability of I between RBNs with equal N and k is due to their distinct values
of Cp. Consequently, we propose a rewiring method to generate ensembles of BNs, from ordinary RBNs, with
fixed values of Cp up to order 5, while maintaining in- and out-degree distributions. Using this methodology,
the dependency of �Cp� on N and k and the variability of I for RBNs with equal N and k are shown to disappear
in RBNs with Cp set to zero. The �I� of ensembles of RBNs with fixed, nonzero Cp values, also becomes
almost independent of N and k. In addition, it is shown that �Cp� exhibits a power-law dependence on N in
ordinary RBNs, suggesting that the Cp affects even relatively large networks. The method of generating
networks with fixed Cp values is useful to generate networks with small N whose dynamics have the same
properties as those of large scale networks, or to generate ensembles of networks with the same Cp as some
specific network, and thus comparable dynamics. These results show how a system’s dynamics is constrained
by its local structure, suggesting that the local topology of biological networks might be shaped by selection,
for example, towards optimizing the coordination between its components.
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I. INTRODUCTION

The dynamical behavior of large, complex networks of
interacting elements is generally quite difficult to understand
in detail. The presence of multiple influences on each ele-
ment can lead to complex patterns of activity even in deter-
ministic models �1�. One example of these systems is the
network of interactions between genes in cells, the gene
regulatory network �GRN�, where the interactions corre-
spond to transcriptional and post-transcriptional regulatory
mechanisms. The expression of a gene may be regulated by
itself and up to 20 proteins expressed by other genes. The
GRN of such interactions has a complicated structure, in-
cluding positive and negative feedback loops and nontrivial
combinatorial logic.

One common approach to investigate the dynamics of net-
works is the ensemble approach �2�, which consists of ex-
ploring the behavior of networks with given parameters
�such as N and k� by studying the properties of many net-
works generated with the same general parameter values, but
each with a unique graph of connections and update rules.
One difficulty in applying this method is determining the
features of the network that should be accounted for when
generating the ensemble.

Predictions of dynamical properties using mean-field ap-
proximations only apply to large and sparse networks �lo-
cally treelike structures�. In Ref. �1�, using the average pair-
wise mutual information ��I�� as a measure of the overall

level of coordination between the elements of models of
complex regulatory networks, it was observed that finite size
effects play a non-negligible role on the �I� of random Bool-
ean networks �RBNs� with a small number of nodes �N
�250�, even with low average connectivity. Also, in Ref.
�3�, the predictions of avalanche size distributions in random
Boolean networks with low connectivity are only valid for
large networks �N�250� due to non-negligible local struc-
ture effects in smaller networks.

Importantly, many studies require numerical simulations
which can only be done for small networks �e.g., Ref. �4��
and, in general, real large scale networks are not locally tree-
like �5–7�. Thus, it is of importance to identify topological
features that cause distinct dynamical behavior between tree-
like and non-tree-like structures.

Some previous studies have focused on the role on net-
work dynamics of specific motifs �8�. These are defined as
patterns of interconnections present in GRNs with a higher
abundance than in networks with equal k and N and random
topology. However, general measures of clustering that could
explain global dynamical behaviors have not been proposed,
e.g., a measure from whose value one can predict the ex-
pected �I� between the patterns of activity of all nodes.

In studies of the topology of real networks �initially social
networks �9��, it has been identified that a network’s cluster-
ing coefficient �C� �10� �defined as the proportion of links
between the nodes connected to a node, averaged over all
nodes of the network� should play a relevant role in the dy-
namics. Subsequent studies have focused mostly on topo-
logical effects of C, such as the relation between C and av-
erage path length �11�.*andre.sanchesribeiro@tut.fi
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The concept of clustering coefficient has been extended in
several works �see, e.g., Refs. �12,13�, and references
within�. We also introduce a generalized measure of cluster-
ing to characterize the local topology of networks. However,
while the previous works have focused on topological con-
sequences of local structures, e.g., correlating clustering with
degree distribution �12�, here we study a model that includes
dynamics explicitly and focus on the effects of local topo-
logical features on the dynamics. Additionally, our extension
of the concept of triangular clusters �10� differs from previ-
ous approaches in that we account for self connections, bidi-
rectional connections, triangles, squares and higher order
clusters. Finally, we note that in Ref. �12�, and references
within, connections are usually undirected while we assume
directed connections.

Some effects of structure on the dynamics have been stud-
ied in lattice structures �14�. There, the focus was on the
differences in the dynamics of various lattice structures, with
the same average connectivity, modeled as cellular automa-
tons with nearest-neighbor interactions and two admissible
local states. Four geometries were considered: a chain, a hex-
agonal lattice, a square lattice, and a cubic lattice. It was
shown that the topology affects the distribution of local
states, by comparing the dynamics on these lattices. We note
that the set of update rules allowed in Ref. �14� was also far
more restricted than the one used here.

In Ref. �15�, basin entropy was introduced to characterize
the dynamics of Boolean networks. Subsequently, in Ref.
�16�, the effects of increasing connectivity on basin entropy
were studied. Basin entropy measures the diversity of the
state space occupied by the attractors and their basins. This
measure, similar to �I�, is also maximized for critical net-
works �1�. Further similarities between these two quantities
are currently unknown.

Dependence of the basin entropy �16� or of the mutual
information �1� on the degree of clustering of the network
has not previously been analyzed directly. Importantly, we
show here that networks with equal connectivity have very
different dynamical properties if they differ in their local
structure. That is, the changes caused in the dynamics of a
particular network, by adding connections, cannot be pre-
dicted from the number of extra connections alone.

In Ref. �1�, �I� is studied to understand how global topo-
logical features, such as connectivity and network size, affect
the flux of information between nodes of dynamical net-
works. Whereas in that work the networks studied have no
local topological structure, and are defined solely in terms of
number of connections and number of nodes, in this work we
analyze and quantify the effects of non-tree-like local struc-
tures on �I�. Importantly, real gene networks, shaped by evo-
lution, are known to have such local structure �7�, and cannot
therefore be approximated by treelike structures. This means
also that local structures ought to play a very relevant role in
the dynamics.

A preliminary observation in Ref. �1� noted that the clus-
tering coefficient �as originally defined in Ref. �10�� could
cause distinct behaviors between large and small RBNs with
equal connectivity. The local topological structure of finite
networks was not pursued further in that work.

Here, we investigate this further. It is shown that it is not
sufficient to account for the original C to characterize the

local structure of networks. This measure needs to be ex-
tended to accommodate other local structures. We introduce
here a measure to characterize the local topological structure
of finite networks, the “generalized clustering coefficient,”
Cp. This measure allows quantifying the dependence of I on
the degree of global clustering. We show that Cp accounts for
all local effects by simulating RBNs where the Cp is set to
zero, and showing that the mutual information of the net-
work ensemble becomes independent of network size.

In the next section, the Boolean network model is pre-
sented, followed by the definitions of temporal pairwise mu-
tual information and generalized clustering coefficient. Next,
we present our results, followed by conclusions.

II. METHODS

A. Boolean networks

A Boolean network �BN� is a directed graph with N
nodes. Nodes represent elements of the system and graph
arcs represent interactions between them. Each node is as-
signed a binary output value and a Boolean function, whose
inputs are defined by the graph connections. The network’s
state is the vector of nodes’ values. In a synchronous BN, all
nodes are updated simultaneously. By running the network
over various time steps starting from an initial state, a trajec-
tory through the network’s state space can be observed �re-
ferred to as a “time series”�.

RBNs were introduced as the first model of GRN �17�.
Each node is a gene, and is assigned a Boolean function from
the set of possible Boolean functions of k variables. In the
RBN model used here, time is discrete and all nodes update
their activities synchronously. Thus, a state of the network
passes to a unique successor state at each moment. Over
time, the system follows a trajectory that ends on a state
cycle attractor. In general, a RBN has many such attractors.

One way of characterizing the dynamics of a RBN is to
measure the mutual information between the time series of
all pairs of nodes. This quantity is now introduced.

B. Pairwise mutual information

The mutual information contained in the time series of
two elements gives a measure of how well their activities are
coordinated in time. In a large, complex network of interact-
ing elements, I is a global measure of how well the system
can coordinate its internal dynamics.

I is defined as follows. Let sa be a process that generates
a 0 with probability p0 and a 1 with probability p1. We define
the entropy of sa as

H�sa� � − p0 log2 p0 − p1 log2 p1. �1�

For a process sab that generates pairs xy with probabilities
pxy, where x ,y� �0,1	, the joint entropy is defined as

H�sab� � − p00 log2 p00 − p01 log2 p01 − p10 log2 p10

− p11 log2 p11. �2�

In case any of the probabilities in the entropy formulas hap-
pens to be zero, its contribution to the entropies should be
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zero as well. Thus, in this context we let 0 log2 0=0.
Ideally, for a particular RBN, we would run the dynamics

starting from all possible initial states and observe the time
series for infinitely many time steps. However, the state
space of even modestly sized RBNs is prohibitively large for
this approach. Instead, the network is started from a random
initial state, and is run for a certain number of time steps.
The fraction of steps for which the value of node i is x gives
px for the process si. The value of pxy for the process sij is
given by the fraction of time steps for which node i has the
value x and on the next time step node j has the value y. The
mutual information between the time series of the pair ij is
then defined as �1�

Iij = H�si� + H�sj� − H�sij� . �3�

With this definition, Iij measures the extent to which in-
formation about node i at time t influences node j one time
step later, at t+1. Note that the propagation may be indirect;
a nonzero Iij can result when i is not an input to j but both
are influenced by a common node through previous time
steps.

To quantify the efficiency of information propagation
through a single RBN, we use the average pairwise mutual
information, defined as

I = N−2

i,j

Iij . �4�

To characterize the efficiency of information propagation in
an ensemble of networks, we use the average pairwise mu-
tual information of the ensemble �1� �I�, where �¯� indicates
the mean value over the members of the ensemble.

Mutual information of the time series of a network is used
here to characterize the network’s global dynamics. This is to
be compared to the next parameter, the generalized clustering
coefficient, which characterizes the structure that gives rise
to the dynamics.

When measuring the mutual information of a RBN from
T=103 time steps, we do not discard transients. The mean-
field approach used in Ref. �1� to estimate the mutual infor-
mation requires either increasing the lengths of discarded
transients or increasing the numbers of initial conditions per
network. Here, we used a similar approach that consists in
averaging over many networks with a random initial state,
thus not requiring removal of initial transients to measure �I�,
since from Ref. �1� it is know that there is satisfactory con-
vergence between meanfield and numerical results both for
increasing lengths of discarded transients and for increasing
numbers of initial conditions per network �or, equivalently,
for increasing the number of networks generated to measure
�I� for some given N and K�.

C. Generalized clustering coefficient

Originally, the clustering coefficient �C� was introduced
to measure the fraction of effective connections between the
first nearest neighbors of a node in an undirected graph, out
of the total number of possible connections �10�. Let Ei be
the number of connections between the ki nodes connected to
a node i. The network average C is �10�

C =
1

N


i=1

N
2Ei

ki�ki − 1�
. �5�

Notably, the �I� of small RBNs �i.e., approximately N
�250� with an imposed C=0 �no triangles� is still highly
dependent on N, though not as much as when C is not equal
to zero. This can be concluded from results shown later on
�Fig. 7�.

The results from the numerical simulations shown in the
results section �Fig. 7� allow to conclude that �I� only be-
comes independent of the network size N if other higher
order topological structures, besides triangles, are not present
in the topology of the network. For that reason, we extended
the concept of clustering coefficient to include higher order
structures �such as squares�.

An annealed approximation was able to predict the �I� of
ensembles of RBN, given k �1�, if these networks are large
enough. This is because of the network’s relatively low con-
nectivity �k�5� resulting in locally treelike topologies.

The reason this approximation failed to capture the dy-
namics of small RBNs �or highly connected ones� �1� is be-
cause these are usually not locally treelike structures when
randomly generated, even for small k values. The existence
of self-inputs, bidirectional connections, triangles, and other
small structures �e.g., squares�, destroy the treelikeness of a
structure, and hence affect I.

Therefore, to generate an ensemble of RBNs whose gen-
eral dynamical behavior �here characterized by �I�� does not
depend on size of the networks, one must impose an equal
value of some generalized version of the clustering coeffi-
cient to all the RBNs. Fixing the value of such a generalized
clustering coefficient can also be used to study the dynamical
behavior of a specific network using an ensemble approach.
Namely, the RBNs of the ensemble ought to have the same
clustering coefficient as the specific network under study.

Here, we generalize the original clustering coefficient �9�
to account for all non-tree-like local structures. The general-
ized clustering coefficient Cp is, similar to the original C,
computed for each node and averaged over all the nodes. For
simplicity, directionality is not accounted for when comput-
ing a network’s Cp. This did not appear to affect the results
on the ensembles of networks studied here. That is, the value
of Cp, computed assuming all network connections are undi-
rected was sufficient to explain the networks dynamics prop-
erties.

In the definition of Cp, we denote the coefficient for dif-
ferent orders p as follows: Cp is the clustering coefficient of
a network of order p �in the present work, only up to order 5
is considered�. C�i,j� is the clustering coefficient of a network
from order i up to order j �inclusively�.

Let � be the node index. Let �i,j
� be the amount of con-

nections between the nodes at distance i and the nodes at
distance j from node �, and Ti,j

� be the possible maximum
amount of such connections. We define Cp as follows �for
order p�2�:

Cp =
1

N


�=1

N �
r=1
p−2�r,p−r−1

�


r=1
p−2Tr,p−r−1

� � . �6�
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For p�3, we define C1 to be the fraction of nodes with
self inputs and C2 to be the mean ratio of connections that
are bidirectional connected to each node. That is, if a node
has three connections and one of them is bidirectional, then
its contribution to C2 is 1

3 . Note that the definition of C3
matches the definition of the original C �10�.

The generalized clustering coefficient of a network, from
order i up to order j, is thus defined as

C�i,j� = 

p=i

j

Cp. �7�

In the numerical simulations presented in the results section,
we consider local structures only up to order 5, due to com-
putational limitations in determining higher orders of Cp and
because this was sufficient to account for all local structure
effects in networks of 25 nodes or more.

We note that the value of Cp for each p value is computed
independently, and in fact, the set of Cp values for each p is
what characterizes the network topology. For sake of sim-
plicity, so that network topologies can be characterized by a
single value, rather than a sequence of values, we opt to sum
the values of each Cp into a single quantity, the “network
Cp.” Other ways of combining each of the Cp values into a
single quantity could also be considered.

We found �Sec. III� that this quantity is sufficient to char-
acterize, from a global point of view, the effects of the local
structures of networks in their dynamics, at the level of detail
observed here. However, a more exact procedure to compare
the local structure features of two networks is to compare
their values of Cp, for each order p, independently.

Finally, we note that, when computing the Cp, our algo-
rithm only recognizes substructures in which each node is
unique. This is done so that, for example, self-inputs �order
1� are not accounted for again when counting bidirectional
connections �order 2�, and so forth. The same principle is
followed when imposing a given Cp value to a network.

To test if the �I� of RBNs which are generated such that
Cp is equal to zero or another imposed value is independent
of the network size N, it is necessary to generate ensembles
of networks with an imposed Cp value. This requires the
generation of RBNs with a random topology which is then
rewired to impose the target Cp.

The rewiring is a procedure that must not change other
properties of the topology and logic of the network. Namely,
the in- and out-degree distributions must remain the same.

D. In- and out-degree distributions and the rewiring
of random Boolean networks

To compare networks with a different generalized cluster-
ing coefficient, we need to generate networks in which other
affecting factors are unchanged. Most importantly, we want
to compare networks in which the in- and out-degree distri-
butions of the nodes are the same but which differ only in
their local clustering structure. To do this, we use an iterative
algorithm as follows.

First, a network is generated with the desired in- and out-
degree distributions with no local clustering structure. This is

done by selecting an in-degree and out-degree for each node
to approximate the desired distributions and then drawing the
connections randomly so that the constraints created by the
degrees are fulfilled. The resulting network is likely to have
a low generalized clustering coefficient.

Starting from a network generated as described, we then
use an iterative optimization method to increase or decrease
the clustering coefficient of the network without changing
the degree distributions. At each iteration, we determine if
the Cp of the network is higher or lower than the desired
value. If it is higher, then we search the network for the loop
structures corresponding to the order of the Cp that we are
trying to reduce, and one of the connections that forms the
loop is removed in such a way that the number of nodes with
a given in-or out-degree does not change. This means that if
we remove a connection that goes out from a node with
out-degree m and connects to a node with in-degree n, we
will use the connection to link some node with out-degree
m−1 and a node with in-degree n−1. To ensure that the
loops are searched for in an unbiased manner, the indices of
the nodes are shuffled at each iteration.

Likewise, if the Cp is lower than the desired value, loops
must be introduced. The network is searched for a chain of
length p+2, where the direction of the first connection cor-
responds to the direction of the last. The first and last con-
nections are then moved so that the first node becomes an
input of the last node in the chain, and the second-last be-
comes an input of the second node. This forms a loop of
length p and maintains the in- and out-degree distributions of
the nodes. Again, the indices of the nodes are shuffled at
each iteration to ensure that the loops are generated uni-
formly throughout the network.

Both the destruction and construction of loops involves
moving connections in the network. This can have unin-
tended side effects such as an increase or decrease in the Cp
of other orders than we were intending to modify. For this
reason, the algorithm must be rerun for other orders until the
target Cp values have been reached.

In some cases, the search for a possible rewiring can be
extremely long. For practical purposes, we limit that search.
Namely, after a specified number of attempts, if the algo-
rithm is unable to find a rewiring scheme which imposes the
desired Cp value, it simply discards this network, and starts
all over with a newly created network.

Since the cost of finding loops grows exponentially with
p, this becomes an expensive operation to perform at higher
orders. Here, we limit ourselves to order 5, but show that this
is enough to account for almost all local structure effects in
the dynamics.

III. RESULTS

The results consist of measurements of I and Cp from
ensembles of RBNs, and show that the variance in Cp ac-
counts for the dependency of I on N and k in RBNs of
random topology. First, we quantify the �I� and standard de-
viation ���I�� over an ensemble of RBNs, each indepen-
dently simulated, as N and k vary. A network’s I is computed
from a time series starting at a random state, and corresponds
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to the average Ii,j between all pairs of nodes. The values of
the standard deviation show how variable the I of networks
with the same k and N can be, due to the differences in their
Cp values.

Next, we show the values of the average and standard
deviation of Cp, up to order 5, of that ensemble of networks
which confirm that these quantities behave similarly to the
average and standard deviation of I as N varies, respectively.
Also is shown that the differences in Cp between RBNs, with
equal k and N values, cause the differences in behavior be-
tween them, i.e., in �I�.

After that, we show that as Cp is set to zero for increasing
values of p, �I� becomes less and less dependent on the size
N. For p�3, no dependency is observed. Importantly, the
same is true for the standard deviation of I, which indicates
that RBNs built according to this new procedure have a far
less unpredictable dynamics.

Finally, we show that the �I� of an ensemble of RBNs,
generated imposing a fixed value of Cp up to order 3, does
not depend on network size either. This shows that the en-
semble approach can be used to explore the dynamical prop-
erties of real networks with a nonzero Cp value, as long as
the same value of that quantity is imposed to the networks of
the ensemble.

In all following results, each data point corresponds to the
average, or standard deviation, of either I or the generalized
Cp, computed, respectively, from a 1000 time step time se-
ries, and topology of 100 independent simulations. Each
simulation consists of generating a RBN, with a given k and
N. In some cases, the network Cp is fixed as well �when
explicitly stated�. Then, from a random initial state, we ex-
tract a time series of 1000 consecutive time steps, from
which I is calculated.

We chose not to discount any initial transients in the time
series. Although, in 1000 time steps, most of the time the
RBN will be in an attractor �representing therefore “long
term behavior”�, we aimed to observe the effects of �Cp� also
in the initial transients, thus it was opted to include this tran-
sient in the 1000 time steps.

As mentioned, the rewiring of RBNs to attain topologies
with specific values of Cp is always done maintaining in- and
out-degree distributions unchanged since these two param-
eters are known to affect the global dynamics �18�. In all
cases, the Boolean networks are generated such that their
topology is random, i.e., connections are placed following a
Poisson distribution of in-degrees with a random selection of
inputs resulting in a Poissonian out-degree distribution as
well. Strictly speaking, the degree distribution is a binomial
distribution, which for large networks, sparsely connected, is
a good approximation of the Poisson distribution.

The update rules are random Boolean functions with a
pbias of 0.5. This means that for each combination of input
values, the output value is selected randomly �independently
with respect to other input combinations� with probability
pbias of obtaining a 1. In the case a given Cp value is imposed
on the topology, this is done according to the method de-
scribed in the previous section.

A. Mutual information of finite RBNs

A detailed analysis of the value of I as a function of k for
RBNs with large N was done in Ref. �1�. These networks

were locally treelike structures. Here, to analyze the effects
of local structures on I, we begin by measuring the variation
of mutual information with network size and connectivity.
These two parameters are later on shown to affect the gen-
eralized Cp of networks.

In Fig. 1, the �I� of the time series of RBNs is plotted as
a function of k and N. The most important conclusion from
Fig. 1 is that there is some difference in the local structure of
the topologies of the networks randomly generated as N is
increased, which is the cause for the differences in dynamical
behavior �here expressed in the average correlation between
all nodes in the time series�.

The results show that �I� is highly dependent on k and N.
As N increases, as expected, local structural effects play a
less relevant role since maintaining k constant and increasing
N creates structures which are locally more treelike, resulting
in a significant decrease of �I� as N increases. For N�250
and low connectivity values �k�2�, the �I� becomes almost
invariant for further increases of N. Thus, a mean field ap-
proximation can be used to predict the �I� values for these
parameter ranges �1�.

All curves in Fig. 1 follow the same trend as N increases,
except for k=2 which corresponds to the critical regime of
RBNs �k=2 and pbias=0.5 �18��. It has been proven analyti-
cally and numerically confirmed that �I� is maximized for
critical networks �1� if N�250. For N�250, RBNs with k
=2 do not have the highest �I�, exemplifying the relevance of
local structure effects in network dynamics.

A key insight in Ref. �1� is that in infinite size networks,
the maximization of average pairwise mutual information is
achieved in the critical regime �visible in Fig. 1� due to the
formation of long chains of effectively single-input nodes
which for other topological constraints do not emerge. This
topological feature, unique for critical networks, explains
why �I� is not zero for large N.

As k increases, the effects of local structures increase, i.e.,
�I� increases since Cp increases. Importantly, for k=3, e.g.,

FIG. 1. �I� of RBNs computed from time series of length T
=103. Each data point is the average result of 100 independent
RBNs, varying N and k. Effects of local structures are most promi-
nent for small N and large k.
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only for N�500 do local effects become negligible. This is
another indication that the main cause for the difference be-
tween predictions using the annealed approximation and nu-
merical simulations is the existence of local structures.

We note that the results from the simulations in Fig. 1 are
consistent, in the sense that lowering k always decreases �I�,
and increasing N always results in lower �I�, indicating that
numerically sampling 100 networks per data point is suffi-
cient to obtain the average behavior. The only two exceptions
to these trends are the RBNs with N�500 and k=2, and the
RBNs with 100�N�300 and k=2.5. Both cases are ex-
plained by the fact that these networks are in the critical
regime �1�. The maximization, when 100�N�300, of �I� at
k=2.5 is due to the values of Cp of RBNs. As shown in
subsequent results �Fig. 7�, �I� of RBNs with 100�N�300
is maximized at k=2 if the Cp of these networks is fixed to
zero.

In Fig. 2, ��I� is plotted, computed from the same set of
RBNs and respective time series used to obtain the �I� values
in Fig. 1. The standard deviation of I of a set of RBNs ��I�
is shown here since it captures how networks with the same
values of N and k can differ in their dynamics, if the con-
struction of the topology is not restricted in any other way
but fixing N and k. The results in Fig. 2 confirm that as N
decreases and/or k increases, ��I� increases and that the ��I�
is very large, i.e., of the same order of magnitude as I, for
small N, which indicates the high variability of I in RBNs
when sampling networks with equal N and k. We now inves-
tigate if the variation of Cp explains the variability of I.

B. Generalized clustering coefficient of RBNs

Figure 3 shows, up to order 5, the �Cp� of the same en-
sembles of RBNs used to obtain the results in Figs. 1 and 2.
Similarly, the standard deviation of the Cp values up to order
5 of these ensembles is plotted in Fig. 4. Given Figs. 1–4, a
correlation is clear. Comparing Figs. 1 and 3 one sees that I

and Cp vary in a very similar way with N and k. Both de-
crease as N increases. After, approximately N400, the two
quantities decrease very slowly as they converge to the val-
ues estimated in Ref. �1�, dependent only on the average
connectivity. A similar correlation exists between the stan-
dard deviation of these two quantities �Figs. 2 and 4�.

To confirm this close correlation between I and Cp we
computed the Pearson product-moment correlation coeffi-
cient values between the mean values of these two quantities
for each K, as N varies. An identical calculation was done
between the standard deviations of these two quantities. The
results are shown in Table I, confirming a strong correlation
between �I� and �Cp� and between ��I� and ��Cp� �19�.

We now present the results of Figs. 3 and 4 on a log-log
scale to observe the behavior of Cp and its standard deviation
for large N. Within the range of two decades observed, both

FIG. 2. Standard deviation of I of RBNs from time series of
length T=103. Each data point is the average result of 100 indepen-
dent RBNs, varying N and k. The diversity of dynamical behavior is
higher for small N and large k.

FIG. 3. Cp up to order 5, averaged over 100 networks, for net-
works with random topology �RBN�, varying k and N. For lower
values of N and higher k, more nodes become part of highly inter-
connected local structures.

FIG. 4. Standard deviation of Cp up to order 5, averaged over
100 RBNs, varying k and N. The diversity of topological features is
higher for small N and large k.
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quantities show a power-law dependency on N �Figs. 5 and
6�. Further studies might give insight into the reasons and
significance of this behavior. It does suggest, however, that
Cp does play a role, although small, even in relatively large
networks, and thereby should be accounted for even in stud-
ies using large scale networks.

C. Removing the dependence of ŠI‹ on ŠCp‹

To observe if the value of �Cp� of the RBNs explains the
dependence of �I� on N, we measured the �I� for RBNs with
k=2, removing various orders of Cp. If the dependence of �I�
on N is completely removed �as the order of the local struc-
tures removed by rewiring increases�, it indicates that it is
sufficient to account for this global measure of local struc-
tures to generate ensembles of networks whose dynamics is
not dependent on N.

Additionally, if this is true, then the variability of I be-
tween networks of same N and k, ought to be due to the
variability in values of Cp between those networks. Thus, the
�I� of ensembles of networks whose Cp is imposed to a fixed
value should become independent of N and its standard de-

viation diminish significantly, in comparison to the values in
Fig. 2.

To test this, we generated ensembles of RBNs with Cp
=0, of increasing order, up to order 5, using the method
described in Sec. II D. The results are shown in Fig. 7. In
agreement with our hypothesis, the higher the order of Cp
fixed to zero, the more uniform the dynamics of the en-
semble is in terms of mutual correlation between temporal
patterns of nodes activities.

The results in Fig. 8 agree with our hypothesis as well, by
showing that ��I� when C�1,5�=0 is much smaller than ��I�
when Cp is not imposed, given the same size and connectiv-
ity �approximately converging only for N�800 where local
structures are no longer present in networks of either en-
sembles�.

TABLE I. Pearson product-moment correlation coefficient
�PMCC� between the means and between the standard deviations of
I and C�1,5� for each K as N varies �N
=25,50,100,150,200,300,400,500,750,1000�.

K PMCC ��I�, �C�1,5��� PMCC ��I�, ��C�1,5��

0.5 0.96168 0.96650

1.0 0.95901 0.99419

1.5 0.97631 0.96645

2.0 0.99531 0.98973

2.5 0.99277 0.98319

3.0 0.98884 0.94816

FIG. 5. Cp up to order 5 on a log-log scale, averaged over 100
networks, for RBNs with random topology, varying k and N. The
linear relationships indicate power-law dependency of Cp on N for
all k.

FIG. 6. Standard deviation of Cp up to order 5 on a log-log
scale, averaged over 100 networks, for RBNs with random topol-
ogy, varying k and N. The linear relationships indicate power-law
dependency of the standard deviation of Cp on N for all k.

FIG. 7. �I� of RBNs computed from time series of length T
=103. The topologies are built such that up to various p the Cp=0.
Each data point is an average of 100 independent RBNs, varying N
and with k=2.
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We note that based on the simulation results with the en-
sembles of networks used here, it is necessary to account for
Cp only up to order 5. Higher order terms, difficult to ac-
count for computationally, did not significantly affect the dy-
namics of RBNs. For higher values of k than the ones con-
sidered here, it might become necessary to account for higher
orders of Cp. However, it is increasingly difficult to find
rewiring schemes to remove increasing orders in high k net-
works, maintaining in- and out-degree distributions un-
changed. We also note the consistency in the results in the
sense that as higher orders of Cp are fixed to zero by rewir-
ing, the dependence of �I� on N decreases further.

Another observation from Fig. 7, in the case of Cp re-
moved up to order 5, the �I� of networks with N�100 is
slightly smaller than for larger RBN. This difference is of the
order of 10−4, whereas the variation in �I� due to Cp variation
is on the order of 10−2. This weak dependency of �I� on N,
only visible when removing Cp up to order 5, is addressed in
the conclusions.

It is now important to determine if one can generate
RBNs whose dynamics is independent of N by imposing a
uniform Cp value up to order 5. If Cp can capture local struc-
ture effects on the global dynamics of networks, the �I� of
networks of an ensemble with an imposed nonzero value of
Cp should be independent of N.

In Fig. 9 the �I� is shown for ensembles of RBNs with
increasing size N. The topologies of these networks were
generated by fixing Cp of orders 1, 2, 4, and 5 to zero, while
C3 is imposed such that 0.09�C3�0.11. C3 is allowed an
interval of values since setting it to a specific unique value
makes the generation of RBN topologies that respect such a
condition very time consuming.

As shown Fig. 9, the �I� is virtually independent of net-
work size, for N�100. Also, in comparison to the �I� of
RBNs where Cp is not fixed, for large values of N, the net-
works with fixed values of Cp ought to have a higher �I�,
because, for large values N, the first ones have zero Cp.
Finally, for small values of N, the situation should invert, i.e.,

the RBNs whose Cp is not fixed, ought to have a higher �I�
because they will have a higher Cp.

In addition, interestingly, networks with fixed Cp and K
=2 still maintain the property of maximizing the value of �I�
�1�. This property does not appear to be significantly affected
by the procedure of imposing values to the Cp of the RBNs,
which explains the difference between the values of �I� for
K=2 and 3. Other factors, such as the average path length are
almost negligible, otherwise one would expect the opposite
results, namely, �I� of networks with K=3 is bigger than �I�
of networks with K=2.

In Ref. �1�, it was shown that �I� is maximized for critical
RBNs whose Cp is not fixed. Our results indicate that this
holds true for RBNs with an imposed value of Cp. Also, for
large N, both for k=2 and k=3, networks with fixed Cp have
higher �I� than otherwise, since if Cp is not fixed it ap-
proaches zero for large N.

These results suggest that networks with higher Cp will
have, given equal values of k and N, higher �I�. Importantly,
and in agreement with the goals of applying a constraint in
the Cp of the networks of the ensemble, the increase of �I� as
N decreases was reduced by two orders of magnitude, and
only starts increasing at N�100, while previously, the in-
crease occurred at N�250.

Here, we have mostly focused on the effects of varying N
in RBNs where the Cp is imposed up to a certain order.
Varying k and maintaining N fixed has the same effects, that
is, imposing Cp constant up to order 5 to this ensemble also
results in removing the dependency of �I� of k �data not
shown�.

IV. CONCLUSIONS AND DISCUSSION

It was known that local structure features have a non-
negligible effect on the dynamics of networks

FIG. 8. Standard deviation of I of RBNs computed from time
series of length T=103. The topologies are built such that up to
various p the Cp=0. Each data point is an average of 100 indepen-
dent RBNs, varying N and with k=2.

FIG. 9. �I� of RBNs computed from time series of length T
=103. The RBN topologies are built such that C3 is imposed to be
between 0.09 and 0.11, while other orders of Cp are fixed to zero up
to order 5. Each data point is the average result of 100 independent
RBNs, varying N and with k=2 and k=3. The �I� of these RBNs
shows virtually no dependency on N.
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�1,8,10,11,14,20�. Here, we propose a global topological
measure that allows the prediction of the overall effect of
these local structures on the dynamics.

The results of our numerical simulations show that Cp is
an appropriate global measure of the “degree” of effects of
local structures in network dynamics. Importantly, we show
that the original clustering coefficient �9� �here correspond-
ing to C3� is insufficient to explain the effects of local struc-
tures. This was shown by the results in Fig. 7, where it is
visible that in RBNs with C1,3=0, the �I� still varies with N.
Namely, it increases as N decreases, which means that the
local structures of these networks still play a role in the dy-
namics. By removing the fourth and fifth order Cp, this de-
pendency of �I� on N is removed and even the smallest net-
works behave identically to the larger “treelike” networks
�i.e., have identical �I��.

Additionally, the values of the standard deviation of Cp
over the ensemble explain the diversity in the dynamics of
RBNs where only the values of N and k are constrained. The
�I� of RBNs with zero or some other fixed value of Cp,
becomes almost independent of N. The dynamics of RBNs of
equal N and k also become far more uniform. Finally, the
higher the order of Cp removed, the more the networks be-
have similar to “infinite” �treelike� structures.

This means that the method of network construction pro-
posed here allows constructing RBNs with a small number of
nodes to which mean field approximations can be applied,
since these usually assume treelike structures �Cp=0�. It also
allows the generation of large networks with a given Cp,
which might be of importance especially when using the
ensemble approach �2� to study the dynamics of biological
networks such as GRNs, since these rarely have locally tree-
like structures.

Several observations might deserve future attention. First,
we note that not all RBNs are rewirable such that a given Cp
value is attainable for a given number of trials. Thus, the
search for possible rewiring of a connection was limited in
our simulations to a certain number of attempts. If unsuc-
cessful, the process is restarted using a newly generated
RBN. This procedure might introduce unknown biases in the
choice of networks if, for example, the property of being
rewirable is somehow correlated with the network’s I.

Second, when removing Cp up to order 5, it was observed
that the �I� of RBNs with N�100 is slightly smaller than for
RBNs with N�100 �Fig. 7�. This weak effect might emerge
from various sources. One possibility is that in such small
networks there are so few rewiring schemes, maintaining the
degree distributions, that the resulting state space of solu-
tions might have very particular, and currently unknown,
properties. For example, limitations in rewiring might cause
the directionality of connections to become biased in some
way. We point out that, for this range of N values, on average
1000 networks were needed to find a network that can be
rewired.

Another possible cause is that, while a time series of
length 1000 of a large RBN will likely consist mostly of a
long transient, in small RBNs most states of the time series
are from attractors. On attractors, more nodes tend to be
frozen than on transients, lowering �I�.

Third, as a first approach, directionality of connections
was not accounted for when computing Cp. There might be

specific networks or methods of generating ensembles,
where it is not sufficient to account for the Cp assuming an
undirected graph. In those cases, the definition of Cp pro-
posed here might need to be extended to accommodate the
directionality of the connections.

Additionally, it remains an open question whether our re-
sults apply to other distributions of in-degrees instead of
Poisson. Although we believe that, qualitatively, the results
would lead to the same conclusions, detailed analysis of how
�I� varies with k and N in those cases might prove interesting
to investigate.

Overall, the results show that “non-tree-like” local struc-
tures cause a significant increase in the dynamical correlation
between nodes in a RBN. This agrees with one of its topo-
logical consequences, the decrease of the average path length
�10�. Also, it suggests that networks, such as biological ones,
subject to selection, are most likely not treelike structures, if
high correlation between the functioning of its elements is
required.

If a network is to be selected based on its �I�, our results
indicate that this can be done by selecting a certain Cp.
Moreover, if the maximization of the expected range of vari-
ability of I is what is being selected, then the range of vari-
ability of Cp should be maximized. This range is most likely
bounded by the necessity of maintaining all nodes connected
to a single network, and perhaps also by the necessity of
minimizing the network’s average path length.

Recently, it was shown that critical networks maximize
�I� in RBNs �1�. However, in that study, the only topological
constraints of the ensemble of networks were in the values of
N and k. Our results suggest that the value of Cp of the
networks in the ensemble cannot be neglected, and perhaps
the notion of criticality could be extended to incorporate this
topological feature.

To the extent that evolutionary fitness depends on optimal
capacity for coordinating the dynamical behavior of the com-
ponents of an organism, and RBNs models capture essential
features of the organization of networks such as gene regu-
latory networks, networks with a high Cp ought to be natu-
rally favored since these maximize �I�. Interestingly, studies
of the structure of natural networks �21� suggest that their C
�as originally defined �10�� is higher than expected by
chance. If this holds true, it necessarily implies that the same
is true for Cp.

Our conclusions suggest that when applying the ensemble
approach �2� to study biological networks, such as genetic
networks, the networks of these ensembles ought to have
similar Cp values as the biological network in question, if
they are to properly mimic the global dynamical properties
as well. Moreover, our measurements of the standard devia-
tion of Cp and the distribution of I values of networks with
equal N and p show that, for those networks to have uniform
dynamical properties, it is not sufficient to impose an aver-
age Cp over the ensemble. Instead, the Cp of each individual
network must be fixed to the same value.

These results are an example of how a system’s structure
affects its dynamics regardless of the nature of the compo-
nents and interactions �20�. That is, Boolean network dynam-
ics are highly constrained by their local topological structure.
Changing local topology while maintaining update rule dis-
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tributions results in significant changes in average global co-
ordination. We expect that these results are extendable to a
wide variety of systems, including stochastic delayed genetic
networks �22�.

Also, we note that the results may be of biological rel-
evance, by suggesting that large networks, including genetic
networks, might follow local and global topological con-
straints, such as criticality and high Cp, if they are to maxi-
mize the coordination between their components. Namely,

the results are another tentative evidence that one should not
expect to find biological networks with random topology at
local or global level.
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